Liquidus Diagram for the Sodium Orthophosphate–Lead Orthophosphate System*

R. K. OSTERHELD AND J. D. HAWTHORNE

Department of Chemistry, University of Montana, Missoula, Montana 59801

Received April 18, 1972

The Na₃PO₄-Pb₃(PO₄)₂ system was studied by thermal analysis, high-temperature microscopy, and X-ray diffraction powder methods. The compound NaPbPO₄ melts congruently at 1117°C. An unidentified phase occurs in the vicinity of 10 mole% Pb₃(PO₄)₂. The system has eutectics at 44.5 and 96 mole% Pb₃(PO₄)₂, melting at 1074 and 1004°C, respectively. The respective melting points of Na₃PO₄ and Pb₃(PO₄)₂ are 1512 and 1015°C.

Introduction

A variety of compounds of the general formula $A^{I}B^{II}PO_4$ have been reported. In the known examples the univalent cations include Li^+ , Na^+ , K^+ , and Rb^+ , and the divalent include Mg^{+2} , Ca^{+2} , Sr^{+2} , Ba^{+2} , Mn^{+2} , Co^{+2} , Ni^{+2} , Cu^{+2} , Zn^{+2} , Cd^{+2} , and Pb^{+2} . Interest in these compounds stems from luminescent properties and from crystallographic relationships to $A^{II}B^{II}SiO_4$ and $A^{I}B^{I}SO_4$ compounds.

The A¹B¹¹PO₄ compounds occur in the A₂¹O-2A¹PO₃-B¹¹(PO₃)₂-B¹¹O quaternary systems at the intersection of the A₃¹PO₄-B¹¹(PO₄)₂ and the A¹PO₃-B¹¹O sections. Phase diagrams have been determined for surprisingly few of these sections. Of the latter type, the NaPO₃-PbO, NaPO₃-MnO, and NaPO₃-CdO systems have been studied (1), as well as the NaPO₃-MgO and NaPO₃-ZnO systems (2). Of the mixed orthophosphate systems, only part of one has been reported, NaCaPO₄-Ca₃(PO₄)₂ (3, 4). The 25 and 50°C isotherms of the Na₃PO₄-Cu₃(PO₄)₂-H₂O system show the occurrence of NaCuPO₄ (5).

Experimental

Because of uncertainties in the composition of commercial trisodium phosphate hydrates (6, 7), Na₃PO₄ was prepared from Na₂CO₃ and Na₂HPO₄ (8). Appropriate mixtures of Na₃PO₄

Copyright © 1973 by Academic Press, Inc. All rights of reproduction in any form reserved. and reagent grade $Pb_3(PO_4)_2$ were ground, heated at 1200°C for 3-4 min, cooled, reground, and annealed at 800°C for 4 hr. Heating at 1200°C provided a liquid phase in almost all the samples to increase homogeneity. Possible shifts of sample composition through volatility prevented longer heating or the use of a higher temperature. Crystallinity was improved by annealing at 800°C.

From 30 to 100% Pb₃(PO₄)₂ phase changes were determined by thermal analysis and by high-temperature microscopy (9). Only the hot stage was used at lower lead phosphate levels because of the temperatures involved. Calibration points were K₂SO₄ tr. 583°C, m. 1069°C; NaCl m. 800°C; and CaF₂ m. 1330°C. Thermal analyses were carried out at 10°C per min on 0.9-g samples using a bare 95Pt5Rh-80Pt20Rh thermocouple in the sample. In almost every case the cooling curve and a second heating curve were determined in addition to the original heating curve. The reported temperatures below 1300°C are felt to be $\pm 5^{\circ}$; those above 1300°C have larger uncertainties due to composition changes resulting from partial volatilization of the sample.

Results and Discussion

X-ray diffraction powder patterns for successive samples across the system showed the occurrence of four phases. The pattern for the

^{*} This work was supported in part by a grant from the Research Corporation.

first phase, Na₃PO₄, was sharply reduced in intensity at 3% Pb₃(PO₄)₂ and indetectable at \geq 5% Pb₃(PO₄)₂. The pattern for the second phase peaked in intensity at about 10% Pb₃(PO₄)₂ and vanished beyond 50% Pb₃(PO₄)₂. With principal lines at the following *d* values (*I*/*I*₀), it could not be matched with any pattern in the ASTM file or otherwise available to us: 3.97 (80), 2.84 (100), 2.78 (90), 2.28 (30), 1.99 (45). The pattern for the third phase showed maximum intensity at about 50% Pb₃(PO₄)₂ and was attributed to NaPbPO₄. The final phase was Pb₃(PO₄)₂; its pattern was detectable only at >50% of that component.

Temperatures at which phase changes were observed are shown in Fig. 1 for each composition studied. For the compounds Na_3PO_4 , $NaPbPO_4$, and $Pb_3(PO_4)_2$ the respective melting points are 1512, 1117, and 1015°C. Melting point values of 1014 (10) and 1015°C (11) have prevously been reported for $Pb_3(PO_4)_2$. A transition was observed at 340°C for Na_3PO_4 .

The NaPbPO₄-Pb₃(PO₄)₂ eutectic occurs at 1004°C and 96% Pb₃(PO₄)₂. A reversible transition at 800°C was attributed to NaPbPO₄ on the basis of the dependence on composition of the strength of the accompanying thermal effect. Although such a transition is typical of A¹B¹¹PO₄ compounds, NaPbPO₄ has previously been reported to be an exception, showing only what should be the high-temperature form (12). It has been shown, however, that the high-temperature phase of an $A^{T}B^{II}PO_{4}$ compound can be stabilized at ordinary temperatures by the presence of a substance insoluble in the low-temperature phase, such as sodium carbonate (13, 14).

Because of the high temperatures involved, thermal studies in the composition range 0-20% $Pb_3(PO_4)_2$ were limited to hot-stage microscopy. Fogging of the hot stage cover slide and successive decreases in the liquidus temperature on reheating of samples gave evidence of serious composition shifts in the 3-10% Pb₃(PO₄)₂ range. For this range Fig. 1 shows the highest liquidus temperature determined on the first heating of several samples at each composition. It is probable that these temperatures are low. If, as suggested by the X-ray data, a compound exists in this composition range, it is probably not congruent melting; the last crystals to disappear during heating on the hot stage appeared to be Na_3PO_4 . It is possible that this apparent compound is a ternary solid solution, comparable to the " γ -Zn₃(PO₄)₂" observed in the Zn₃(PO₄)₂- $Mn_3(PO_4)_2$ system (15). The eutectic between this unidentified phase and NaPbPO₄ occurs at 1074°C and 44.5% Pb₃(PO₄)₂.

We did not find in this system the previously reported apatite-like compound, NaPb₄(PO₄)₃ (16), nor a compound analogous to Na₂Ca₅(PO₄)₄ (17). The former compound forms only in the presence of water vapor (12). Since these compounds would occur at 80 and 71 mole% Pb₃(PO₄)₂, respectively, and the liquidus shape

FIG. 1. Na₃PO₄-Pb₃(PO₄)₂ system.

is unusual in this region, the samples at 80 and 70% Pb₃(PO₄)₂ were additionally heated at 800°C for twelve 22-hr periods, the samples being ground between the heating periods. This extended annealing caused no change in the thermal analyses nor in the X-ray diffraction patterns for these samples. The liquidus shape in this region is attributable, presumably, to quaternary features outside this binary section.

References

- F. DECARLI, Atti II Congr. Naz. Chim. Pura Appl. 1926, 1146; Chem. Abs. 22, 2119 (1928).
- 2. S. I. BERUL AND N. K. VOSKRESENSKAYA, Izv. Akad. Nauk SSSR Neorg. Mater. 4, 2129 (1968).
- J. ANDO AND S. MATSUNO, Bull. Chem. Soc. Japan 41, 342 (1968).
- S. MATSUNO, T. MIYAHASHI, AND J. ANDO, Kogyo Kagaku Zasshi 70, 1638 (1967).

- I. G. DRUZHININ AND L. A. TUSHEVA, Izv. Vyssh. Ucheb. Zaved. Khim. Khim. Tekhnol. 10, 1075 (1967).
- 6. R. N. BELL, Ind. Eng. Chem. 41, 2901 (1949).
- 7. B. WENDROW AND K. A. KOBE, Ind. Eng. Chem. 44, 1439 (1952).
- R. K. OSTERHELD AND E. W. BAHR, J. Inorg. Nucl. Chem. 32, 2539 (1970).
- 9. L. GLASSER AND R. P. MILLER, J. Chem. Educ. 42, 91 (1965).
- 10. M. AMADORI, Gazz. Chim. Ital. 49, I, 50 (1919).
- 11. L. MERKER AND H. WONDRATSCHEK, Z. Anorg. Allg. Chem. 306, 25 (1960).
- 12. R. KLEMENT, U. KERSCHER, AND P. KRESSE, Naturwissenschaften 48, 523 (1961).
- 13. M. A. BREDIG, J. Amer. Chem. Soc. 63, 2533 (1941).
- 14. M. A. BREDIG, J. Phys. Chem. 46, 747 (1942).
- F. A. HUMMEL AND F. L. KATNACK, J. Electrochem. Soc. 105, 528 (1958).
- L. MERKER AND H. WONDRATSCHEK, Z. Kristallogr. 109, 110 (1957).
- 17. J. ANDO AND S. MATSUNO, Bull. Chem. Soc. Japan 41, 342 (1968).